Ir direto para menu de acessibilidade.
Página inicial > Fotos das Defesas
Início do conteúdo da página

Fotos das Defesas

Última atualização em Domingo, 28 de Janeiro de 2024, 19h16 | Acessos: 614

  

DEFESAS 2023

 

Título: Análise de Arquiteturas de Redes Neurais Para Segmentação Semântica de Dados Sísmicos

Autor:  Gabriel Danilo Figueiredo da Silva Data da defesa: 31/05/2023

 

 Qualificação

Título: Desenvolvimento de um sensor ótico de umidade do solo para aplicaçoes agrícolas

Autor:  Gorsi Mawuli Atiglo Data da qualificação: 18/12/2023





DEFESAS 2022

 

Título: ESTUDO DO DESEMPENHO FOTOVOLTAICO EM CÉLULAS SOLARES SENSIBILIZADAS POR CORANTES NATURAIS UTILIZANDO ÓXIDOS SEMICONDUTORES HÍBRIDOS

Autor: Higor Oliveira da Cunha    Data da Defesa: 24/03/2022

 

 

Título: Melhoria da eficiência de conversão fotovoltaica em células solares sensibilizadas por corantes com base em co-sensibilizadores de Annona squamosa, Malus domestica e Musa

Autor: Arcano Matheus Bragança Leite Data da Defesa: 23/03/2022

 

 

 

 

 

DEFESAS 2021

Aluno: Gabriel Gelard Reis de Castro

Título: Dynamic Path Planning based on Neural Networks for Aerial Inspection

Resumo:

Unmanned Aerial Vehicles (UAVs) are a suitable solution to automate inspections on large structures that require periodic inspections due to their flexibility of flight and preventing risks to humans. However, the inspected environment could be complex and highly dynamic. Therefore, tridimensional path planners are crucial in aerial tasks. Different kinds of 3D path planning were developed in the last years, and most of them are classified as heuristic methods. A drawback of these traditional methods is that computational time depends on the environment’s complexity and scale. Path planning based on Neural Networks (NNs) arises from overcoming these algorithms’ bottlenecks. In this sense, this work proposes a novel deep learning structure to perform real-time path planning in an unknown environment. The strategy was developed to generate an initial database used for training and validate the results in a simulated environment using Gazebo/ROS software. The results showed that the network topology and the training method obtained satisfactory performance to be applied in a real-world scenario.

Banca: Presidente, Milena Faria Pinto, D.Sc. (orientadora) (CEFET/RJ), Diego Barreto Haddad, D.Sc. (CEFET/RJ), Ana Lucia Ferreira de Barros, PhD. (CEFET/RJ), André Luis Marques Marcato, D.Sc. (UFJF), e Raul Queiroz Feitosa, D.Sc. (PUC-RJ)

       

                                   

 

Aluno: Gabryel Silva Ramos

Título: A Framework for Autonomous UAV in Offshore Mooring Tasks

Resumo:

As oil and gas exploration goes toward deeper fields in the Brazilian industry scenario, the offloading operations consolidate themselves as the most viable option to drain production. However, this operation demands expensive resources, such as shuttle tankers and support boats, and presents operational risks, which despite managed, limited and mitigated to be as low as reasonably possible, are still present. Therefore, this research proposes to use Unmanned Aerial Vehicles (UAVs) in an autonomous mode to carry out the messenger line from the shuttle tanker to the oil rig instead of using a Line Handling (LH) boat (for conventional operations that use those resources) or the messenger cable launching guns (for dynamic positioning operations). This represents a viable alternative solution to reduce costs and risks in these tasks and a possibility to eliminate some meteorologic and oceanographic limiting conditions to operations, since the UAV will be susceptible only to wind conditions, and not to sea and visibility conditions like LHs are. It is presented in this work a hybrid navigation methodology based on computer vision and sensor fusion technique with Extended Kalman Filter for autonomous Unmanned Aerial Vehicles (UAV). The proposed framework was developed in Robotics Operating System (ROS), tested in a realistic simulated environment considering several practical operational constraints. The same controller was tested on a physical UAV using scale ship models and also in a field test aboard a production facility to validate simulation results. The developed controller was noted to behave very well and simulations and physical tests showed robust results. Based on these tests, an economical evaluation was conducted by simulating the application of this technology in two distinct Brazilian deep water oilfield scenarios.

Banca: Presidente, Milena Faria Pinto, D.Sc. (orientadora) (CEFET/RJ), Diego Barreto Haddad, D.Sc. (CEFET/RJ), Ana Lucia Ferreira de Barros, PhD. (CEFET/RJ), Leonardo de Melo Honório (UFJF), e Cristina Urdiales (Universidad de Málaga)

           

 

 DEFESAS 2020

Autor: RAPHAEL DE SOUZA DOS SANTOS Data da Defesa: 22/12/2020

Autor: FRANCISCO CAPUZO FERREIRA Data da Defesa: 21/12/2020